
MATHEMATICS OF COMPUTATION 
VOLUME 64, NUMBER 212 
OCTOBER 1995, PAGES 1717-1731 

48 MORE SOLUTIONS OF MARTIN DAVIS'S 
QUATERNARY QUARTIC EQUATION 

DANIEL SHANKS AND SAMUEL S. WAGSTAFF, JR. 

Dedicated to D. H. Lehmer and Julia Robinson 

ABSTRACT. We find 48 more solutions to a Diophantine equation investigated 
by Martin Davis. Before our work, only two solutions were known. Construc- 
tion of the new solutions required the factorization of several large integers. 
Because the equation relates to Hilbert's Tenth Problem it is desirable to know 
if it has only finitely many solutions. An elaborate argument is given for the 
conjecture that the equation has infinitely many solutions in integers. 

1. INTRODUCTION 

Martin Davis [1] introduced the equation 

(1) 9(u2 + 7v-)' - 7(r2 + 7s2)2 = 2 

with the catchy name "one equation to rule them all", and proved that if it had 
no solution in nonnegative integers other than the trivial 

(2) u = r = 1, v = s = 0, 

then Hilbert's tenth problem would be unsolvable. Herrmann proved [2] the 
existence of a nontrivial solution, but he did not compute it explicitly. That 
was done by Shanks [3, p.68] who gave it as 

(3) u = 525692038369576, v = 1556327039191013, 
(3) rr= 2484616164142152, s = 1381783865776981. 

At this point, Julia Robinson (as indicated in [3]), extended Davis's theorem by 
stating that if (1) had only finitely many solutions, then Hilbert's tenth problem 
would be unsolvable. 

Shortly after this, Matiyasevich did prove it unsolvable by a different method. 
His new book [4] gives an exposition of the whole field. On page 36, he asks, as 
an open question, whether (1) does, or does not, have infinitely many solutions. 
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We do what we can with that question later, but first we wish to show the 
existence of more solutions as in our title. 

2. THE HERRMANN-SHANKS SOLUTION 

Herrmann begins with the Pell-like 

(4) 9(A,)2 -7(B)2 = 2 

and obtains all positive A, and Bn that satisfy (4). Beginning with the trivial 
solution (2), he gives 

(5) Ao= 1, Bo= 1 

and the simple recursions 

(6) An+i = 8An + 7Bn, Bn+i = 9An + 8Bn. 

The two sequences grow exponentially like 

(8 + 37)n 

and give all positive solutions of (4). 
Let us list n, An, and Bn (mod 7): 

n 0 1 2 3 4 5 6 
An 1 1 1 1 1 1 1 
Bn 1 3 5 0 2 4 6 

For a given n in (4) the question now is whether 

(7) An = u2 + 7v2, B = r2 + 7S2 

both have solutions. Let z be a positive integer. The criterion for odd z such 
that 

(8) z = x2 + 7y2 

is classical: such x and y exist if, and only if, all prime-power divisors P of 
z, that is: 

p = pk 11 Z 

satisfy 

(9) P=0, 1, 2, or 4 (mod 7). 

Since a product 7r of P satisfying (9) again satisfies 

r= 0, 1, 2, or 4 (mod 7), 

it follows from our table that if 

(10) n-=1 2, or6 (mod7), 

Bn cannot satisfy (7). So those n, given by (10), cannot give us a solution of 
(1). 

By further sieving discussed below, and massive computation, Herrmann 
first suspected, and then proved, that the 32-digit numbers A26 and B26 (with 
26- 5 (mod 7) ) were both prime. This was his nonconstructive existence 
theorem for a nontrivial solution of (1). 
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In [3], QUPAPR (Quadratic Partitions of Primes) is one of the "five number- 
theoretic algorithms" of the title. It computes, very efficiently, x, y, and m 
in 

(11) p= (x2+Ny2)/m 

for any prime p for which 

(12) +1 

and where m is minimal, and therefore m = 1 if that is possible. Then two 
examples are given. The remarkable prime p = 26437680473689 satisfies (12) 
for all N from 1 to 150, and so the solutions x, y, and m are listed for all 
these N. Second, for p = A26, B26, N = 7, and m = 1, the solution (3) is 
given. The amusing point is made that it is much faster to compute the explicit 
solution (3) than to do the lengthy primality tests for A26, B26, and thereby 
only obtain an existence theorem. 

3. MORE SOLUTIONS 

The new book [4] renewed interest in the problem and the open question. 
With a little sieving, discussed below, An, B, looked promising for n = 33 
and 35. In the quarter century since Herrmann's paper, algorithms for primality 
and factorization have improved enormously. Since much of this progress is 
associated with the journal Mathematics of Computation and the Cunningham 
Project, the present authors can claim a minor role, since one of us is an editor 
of the journal and the other is the manager of the project. One of us asked the 
other to please factor A33, B33, A35, B35 . The whole table of factors of An, 
Bn, from n = 1 to 35 was produced at once and is exhibited in the Appendix 
below. 

Note first that A26 and B26 are confirmed to be prime. Now examine A33 
and B33 and reduce them and their prime factors modulo 7. We have 

A33-1-4.1X2 (mod 7), 
(13) B33=-4-1X4.1 (mod 7). 
All prime factors here are expressible as 

p = x2 + 7y2 

and, for the first two prime factors of A33 we have 

1607 = 402 + 7. 12, 243402458839 = 1792082 + 7 1737352. 

Then, the two products 

(40 + v'17)(179208 ? 17373517) 

are 
5952175 + 7128608117, 8384465 - 6770192117, 

and give the product of these first two prime factors by two representations, 
namely 

(59521752 + 7 i 71286082) = (83844652 + 7 . 67701922). 
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Then, continuation with the third prime factor gives us four distinct represen- 
tations: 

A33 = U2 + 7V2. 

Likewise, we obtain four for 

B33 = r2 + 7S2. 

So, n = 33 gives us 16 solutions of (1). There is no real value in listing these 16 
sets of big numbers u, v, r, and s since their only known purpose is visibility. 

Similarly for n = 35, we have 
(14) A351 -1 i 1 (mod 7), 

B35- 1 2.2.4 4 .1 (mod 7) 

and therefore 32 more solutions of (1). Then, and this is the easy part, 

(15) 16 + 32 = 48. 

4. THE CONJECTURE 

The "Open Question" whether (1) has infinitely many solutions may be very 
difficult. It is even possible that it is undecidable. We have been sensitized to 
that possibility by our earlier collaboration [5, 6] on the problem of Euclid's 
Primes. Freeman Dyson suggested that the conjecture in [5] may be undecid- 
able. 

We give our best judgement of the question concerning (1) and embody that 
in our 

Conjecture 1. Equation (1) has infinitely many solutions in integers. 

The fact that we so easily obtained 48 new solutions of (1) is not evidence 
for Conjecture 1. The number of decimals in An and Bn is approximately 

nlogl0(8 + 31;7) = 1.202n, 

and for n = 33 or 35 factorization is now easy. But one would not have 
to increase n too much before even the NSA could not factor An and Bn. 
The difficulty of factoring very large numbers creates the possibility that our 
conjecture may be undecidable. 

Consider the positive integers z given by (8). Let the number of such integers 
< Z be B7(Z). Then, by a variation of a theorem of Landau [7] one has 

(16) B7(Z) b7Z 
lI og Z 

where 

(17) b7= 0.543539641. 

For comparison, let B3(Z) be the number of positive integers z < Z of the 
form 

z = x2+ 3y2. 

Then one has 

(18) B3(Z) 0.638909405 Z 
(18) B3 (Z) 

VI -W9~~lo Z 
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The function-theoretic source of (16) comes from the distribution of primes 
into 

p primes, where p 1, 2, or 4 (mod 7) 
(19) and 

q primes, where q 3, 5, or 6 (mod 7). 

The denominator l/ogZ comes from the fact that the p and q primes are 
equinumerous as they go to infinity, while the constant b7 is based upon the 
details of their distribution. Whereas in (18), we have two types of primes: 

p _ 1 (mod 3), q--2 (mod 3). 

These are also equinumerous, but they have a detailed distribution distinct from 
those in (19). So log Z remains the same, while the constant is different. We 
will need this distinction presently. 

Let us interpret (16) by saying the probability of (8) is 

(20) 
,log z 

Our Bn range over all residue classes (mod 7) like all positive integers z, and 
are divisible by some p primes and some q primes. 

Let us tentatively, subject to correction later, assume the probability of 

(21) B = r2 + 7s2 

to be 
b7 b7 

VlogBo(8?3X) 

That equals 

(22) 0.327 

Now An 1 (mod 7) always, and let us assume with sufficient accuracy, that 
the probability of 

(23) An=u2 +7v2 

is twice that of (22), and let us assume, as seems to be true, that (21) and (23) 
are independent events. Then the probability that n gives us a solution is 

0.213 
n 

So the number of n < N that yield solutions is 

(24) 0.213(log N + y), 

i.e., it goes to infinity. 
But the number of solutions goes to infinity much faster. The second case, 

n = 26, is freakish in that it gives only one solution. Usually we have 2m 
solutions, and on the average, m will increase with n. 
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This is evidence for our conjecture. But wait; we must make the correction 
mentioned above. It is in fact, the most interesting part of the paper. 

5. THE INTRICATE BALANCE 

Before we launch into that, we must correct two errors in [2, p. 209]. In his 
(6.6) Herrmann states that the primitive period of (A, B,) mod P for any 
prime P > 3 is a divisor of 

(7) 
That is an error, typographical or otherwise; it should read 

(P 7 

His (P/7) = (-7/P) is the character for Q(VC=7) as in (19) whereas the char- 
acter for Q(v"i), which is (7/P), is appropriate for (4). For example, for 
P = 31, the primitive period is 15 which divides 30 = 31 - (7/31) and not 
32 = 31 - (31/7). Note, in our factor table, 31 divides B7 and then B22, and 
22-7= 15. 

Secondly, in "the first case" at the bottom of page 209, he suggests there may 
be q primes that never divide A, or Bn . There are no such q primes, for if 
P is a q prime, then 

F- (p)=q+l 
according as q = 4k ? 1. In either case q + 1 is twice an odd number. But if 
the primitive period is 2(2no + 1), then q1A,0 as in Herrmann's (6.1). And if 
the primitive period is (2no + 1), then qlBno as in his (6.2). 

Let us examine which primes divide which A, or Bn, and which primes 
divide neither. First, 2, 3 and 7 are special, since they occur in (1). One finds 

2 never divides An or Bn , 
3 divides An for all n = 3k + 1, 
7 divides Bn for all n = 7k + 3. 

There are simple rules for 3k and 7k to be divisors, but we can skip them 
for brevity. 

For any q prime there is a positive no which we call its pioneer. Then, as 
in [2, pp. 209, 210 as corrected], q divides An, or Bn, but not both, for all 

(25) n = (2nO + )k + no. 

The odd number (2no + 1) we call q's period. To determine the period, and 
therefore the pioneer of any q > 3, one finds 

(26) 2nO + 1 = (q ? 1)/2m, 

where m is some divisor, necessarily odd, of (q ? 1), and where we select + 1 
according as 

(27) q = 4k ? 1. 

Frequently, m = 1. Once we compute the pioneer no of q from the first zero 
of An or Bn (mod q ), then, of course, 

m = (q ? 1)/2(2nO + 1). 
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For those frequent q where m = 1, we have 

(28) no lq, 

an important point since, as we shall see, the no for p primes will always be 
smaller. 

Before we go on to the surprising behavior of the p primes, let us make an 
application of the q-theory in (25) and (26). After a little sieving with small 
primes, it was observed that no q prime seemed to be a divisor for n = 33. 
Since 2. 33 + 1 is prime, it follows that no q having a pioneer < 33 divides 
A33 or B33. Therefore, if any q does divide, 33 must be its pioneer no. Then 
from (26), we have 

q = 134(2t + 1) + 1, 

where we have replaced the odd m by (2t + 1). On a little HP42S calculator, 
it was quickly found that no 

q = 268t+ 133 or 135 < 10, 000 

divides A33 or B33, and this suggested that A33 and B33 may be q-free. 
Likewise for A35 and B35 and 

q = 284t+ 141 or 143 < 10, 000. 

That is why we went on to factor An and Bn for n = 33 and n = 35. Actually, 
as it turns out, Herrmann [2] had done something similar for n = 26 except 
that he tried both p and q primes as divisors. 

Now we go to the startling behavior of the p primes. We write any p > 2 
in terms of two nonnegative parameters s and t as 

(29) p=2s(8t+4)?1. 

We call s the variety of p and, for clarity, we list the first three varieties: 

s p density 
0 8t+3or5 1/2 
1 16t+7or9 1/4 
2 32t+ 15 or 17 1/8 

One-half of the p, those in variety 0, have the forms 8t+ 3 or 5. One-quarter 
of the p, those in variety 1, have the forms 16t + 7 or 9, etc. 

The first important fact is that all p in variety 0, namely p = 11 , 29, 37, 43, 
53 , ... , behave like 2: they never divide An or Bn since both contingencies 
contradict (4) modulo p. All p in varieties s > 0 are in six residue classes 
(mod 56), namely, 

(30) p _ 23, 25, 15, 9, 39, or 1 (mod 56). 

We may visualize these six residues as a cyclic subgroup in the cycle graph for 
56 shown on [8, any edition, p.88]. Now most of the p primes in (30) also 
behave like 2, they never divide A, or Bn ! 

Let us examine the first 30 examples of p 9 (mod 56) and p _ 39 (mod 
56) in Table 1 listing their pioneers, if they have one. The table was computed 
on a HP42S, as before. 



1724 DANIEL SHANKS AND S. S. WAGSTAFF, JR. 

TABLE 1 

56t + 9 56t + 39 
p no p no 

233 - - 151 - - 

401 - - 263 B 16 
457 B 28 431 - - 
569 B 35 487 - - 
1129 - - 599 B 37 
1297 - - 823 B 51 
1409 - - 991 - - 
1801 A 37 1103 - - 
1913 A 119 1327 - - 
2081 - - 1439 - - 
2137 - - 1607 A 33 
2417 B 75 1663 - - 
2473 B 154 1831 B 114 
2753 - - 1999 - - 
3089 - - 2111 - - 
3257 B 203 2447 A 25 
3313 B 11 2503 - - 
3593 - - 2671 - - 
3761 - - 3119 - - 
3929 B 245 3343 - - 
4153 B 259 3511 - - 
4657 - - 3623 A 226 
4937 B 308 3847 - - 
4993 - - 4127 - - 
5273 A 329 4463 - - 
5441 - - 4519 - - 
6113 - - 4799 - - 

6337 - - 4967 - - 
6449 - - 5023 - - 
6673 - - 5303 A 25 

The table is read this way: 
p = 233,401,1129, ...,and p= 151,431,487,... 

behave like 2; they never divide An or Bn. On the other hand 

457 divides Bn for n = 57k+28, 
1801 divides An for n = 75k + 37, 
263 divides Bn for n = 33k + 16, 
1607 divides An for n = 67k + 33, 

etc., where, as before, the period equals 2no + 1 where no is the pioneer. 
Note that 1607 divides A33 as we previously observed. Likewise 569 divides 

B35. The other four residues (mod 56) in (30) behave similarly to the two in 
Table 1 and are omitted for brevity. 
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Now note, of the 60 p primes in the table only 20 divide A, or Bn . We 
conjecture that this is the correct asymptotic ratio: 

Conjecture 2. Asymptotically speaking, one-third of the p primes in varieties 
s > 0 divide An or Bn . They comprise one-sixth of all p primes. 

We think this conjecture is provable and may well be an already known the- 
orem. There exists considerable literature on related problems. 

Now consider the pioneers and periods for the p primes that do divide An 
or Bn . Instead of rule (26) for q primes we now have 

(31) 2no + 1 = (p + 1)/2s+2m. 

Here m, as before, is an odd divisor of (p + 1). There are two important 
changes in (31) relative to (26): first, the signs ? have been interchanged for 
the primes 

(32) p = 4k+ 1. 

Second, instead of 2 in the denominator, we now have 8 for p of variety 1, 16 
for p of variety 2, etc. 

We may expect m to be distributed in the same way for q and p primes. 
But the power of 2 causes a major change. We may weight the factor 

1/2s+2 

for p primes of variety s by the density 

1/2`+1 

of p primes of variety s to obtain an average value of the factor. It is 

(33) Z 22s+3/ 2s+1 12 
S=l s=l 

Instead of I in (26), on the average we have 1 in (31). Therefore, on the 
average, the periods and pioneers of p primes will be only I of the periods 
and pioneers of q primes. 

In the An and Bn we therefore have a remarkable and intricate balance of 
q and p divisors. Only 1/6 of the p primes are divisors, but n-wise, they 
have been squeezed to the left by a factor of 6 and therefore as n * oo, we 
should expect equinumerous p and q divisors. Is this not wondrous strange? 
We quote Hamlet in Act 1, Scene 5: "There are more things in heaven and 
earth, Horatio, than are dreamt of in your philosophy." 

The result is that instead of (22) as the probability, we now expect 

(34) b 

as the probability of (21), where b is an unknown constant. We do not know 
it even crudely, let alone with the precision in (17). Then, likewise, we replace 
(24) with 

(35) c(logN+ y) 

for an unknown constant c. 
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We have no doubt that many investigators have given heuristic arguments for 
Conjecture 1, and we have been told about two of them: D. J. Newman and 
Don Zagier. But we know of no one who has incorporated into his argument 
the intricate balancing of the p and q divisors of A, and Bn that we have 
discussed in this section. Yet that is clearly necessary since that is how A, and 
Bn actually behave. 

Reader, as an exercise, verify from our 

16071 A33 and 5691 B35 

mentioned above, and (31), that 33 and 35 are their pioneers, they both are of 
variety 1, and while the first has m = 3 the second has m = 1. The second, 
instead of (28) has 

That is the point: the intricate balance (33). 
In [8, third or fourth edition, p. 239 f], there is a lengthy analysis as to 

what kind and how much evidence a proposition should have before we call 
it a conjecture. By those standards, we cannot claim that our Conjecture 1 is 
as convincing as, say, the twin-prime conjecture. We may even admit a slight 
doubt in the correctness of (35). Nonetheless, as a whole, we believe that the 
evidence favors Conjecture 1 and we think it is true. 

We wish to be candid about (35). There is a phenomenon here that we may 
not have properly included in our analysis. In the theory for (16) each q prime 
is acting individually with its own period q . But the q divisors of An and Bn 
often work in gangs. For example, 

q = 3, 5, and 17 

all divide An or Bn for n = 3k + 1. Thus, an An or Bn that is struck by 
a q, may like Julius Caesar, be struck several times. This overkill must mean 
that the q comprise, effectively a smaller set, and on occasion an A, and Bn 
both escape without injury. We do not know whether this mechanism merely 
changes the constant c in (35) or whether the function of N there actually 
changes. But in either case, it does not seem like it can damage Conjecture 1 
since, if anything, it will cause more solutions to occur. 

6. SEQUEL 

While the foregoing was being typed, we continued with our computation and 
theory. We examined An and Bn for 36 < n < 200, and quickly eliminated 
most of them, first, by using (10), and by sieving out those for which a q2k+ l 

factor had a small pioneer. Then we did a little trial-division factoring with 
small primes. On the few n that remained, elliptic curve factoring obtained 
a moderate q factor for most of them. Let us list examples since we wish to 
draw an inference later: 

1213266591 A53, 74547793j B96, 
13489347539 A54, 1098341 A189, 

59061523jA68, 6402161 B194. 
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At this point, we were left with only n = 81, 131, 158, 168, 173, and 186 
as those n < 200 possible for additional solutions. More elliptic factoring gave 
larger q factors, and 

1128720907 A173, 
5097445601 A186, 

6584664031259 A131, 

left only 

(36) n = 81, 158, 168. 

Now we pause for commentary. In these eliminations, it is clearly irrelevant 
whether q divides An or Bn, but we do not wish to deprive the reader of the 
criteria (mod 56) obtained by solving (4) modulo q: 

TABLE 2: (mod 56) 

3, 27, 19 qjAn 
5, 13, 45 qjAn 
17, 41, 33 qjBn 
31, 551 47 qjBn 
11, 43, 51 P{An orBn 
37, 29, 53 ptAn or Bn 

In each line, the second entry is the cube of the first (mod 56), and the third 
is the fifth power of the first (mod 56). The first four triples are q primes and 
divide An or Bn as indicated. The last two triples are the p primes of variety 
0, already discussed. All six triples comprise the alternate elements of the other 
six cyclic subgroups in the cycle graph for 56 previously mentioned [8, p.88]. 

Our second observation goes back to Conjecture 1. The best hope of disprov- 
ing Conjecture 1 is to construct a covering set: that is, a moderate number of 
arithmetic progressions n = aik + bi, with moderate coefficients ai and bi, 
that completely cover all n > some N. But the large q listed above as divi- 
sors needed to eliminate n = 54, 173, ... makes the existence of a covering 
set dubious. 

Now we return to (36). A81 and B81 are 98 decimal digit composites. They 
cannot resist modern algorithms and computers but are not trivial: one must 
be appropriately equipped. By further elliptic curve factoring, we finally found 
a 20-digit p prime divisor of B81 . We call it P20. Still more elliptic curve 
factoring on a faster machine, a MasPar ("massively parallel"), found nothing 
for B81 or A81 . At this point we know that the 78-digit B81 /P20 is a product 
of two p primes or two q primes. 

But which? Is there an algorithm faster than factoring to make a determina- 
tion? We know of none; it is an important question. 

The 78-digit B81 /P2o was now treated by a different algorithm on the MasPar 
which was guaranteed to work in less than one hour. This algorithm [9] is known 
as ppmpqs. It is an advanced development of Pomerance's quadratic sieve. We 
spare you the details. 

It did work and delivered B81 = P20 * q35 * q44, where the subscripts on the 
q 's give the number of decimal digits of the primes. They are q primes and 
n = 81 gives no solution of (1). For those who wish to see them, the factors 
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are 
P20 = 74065332635371079447, 
q35= 12810478486228669448260507960524473, 
q44= 27954729044853253218766312116470987098157519. 

Are we disappointed? Not really: we must admit a certain ambivalence. If 
n = 81 had worked, we would have to change our title and spoil the joke (1 5). 

The two remaining candidates, n = 158 and 168, are beyond current tech- 
niques unless we are very lucky. We continue computations on them but 
must state that the prospects are not good. We are also continuing with some 
n > 200. 

7. THE RATIONAL CASE 

For completeness, and though it may be too apparent to some readers, we 
will give a constructive proof of this 

Theorem. Equation (1) has infinitely many solutions in positive rational num- 
bers. 
Proof. We need not venture beyond the trivial solution (2) where we had 

(37) u2 + 7v2 = 1, r2 + 7s2l= 1. 

Let p be any p prime and write 

(38) p = a2 + 7b2. 

Then, one easily verifies that 

(39) u= la2- 7b 
21, = 2ab 

p p 

satisfies (37). So, for example, 

u= 1, V=3 , r= 27, S= 4 

is a solution of (1). And so forth. 
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NOTE ADDED IN PROOF 

Subsequently we completely factored A158 = q30 * q160, where the smaller 
q-prime is q30 = 933819487673994667383468877843. As of today, March 20, 
1995, n = 168 has not been completed and we do not know if it gives solutions 
for (1). Don Zagier suggested that we might have better luck by going on to 
200 < n < 300 and specified eight candidates there. We were not optimistic: 
by (35), the number of "good" n in this interval is clog 3/2, and though we 
do not know c, if it is anywhere near that in (24), the prospects were not good. 
And if there is a good n there, it would probably be impossible to factor both 
its A, and Bn. 
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Nonetheless, we examined Zagier's candidates and eliminated them all: 

q (mod 56) q (mod 56) 
18851295617977331 (19) |A210 25521018227 (19) 1A270 

3213542430409 (17) IB224 6731903 (31) IB278 
934465333248316483 (19) IA228 1907810341 (45) A284 

1183409 (17) IB243 18421914172890751771 (3) A299 

We verified that all other n in 200 < n < 300 are easily eliminated so the 
only candidate < 300 remains 168. 

The 48 new solutions, computed explicitly by QUPAPR, are available from us 
by e-mail. They had also been computed independently by John P. Robertson. 

APPENDIX: FACTORIZATION OF An AND Bn FOR 1 < n < 35 

A1=3 - 5 

B1 = 17 

A2 =239 

B2 = 271 

A3 = 13.293 

B3 = 7 - 617 

A4 = 3-3.5 19*71 

B4 = 17.4049 

A5= 419 . 2309 

B5 =1097009 

A6 =131.117701 

B6 = 17483311 

A7= 3 - 5 - 5 . 239 . 13709 

B7= 17 . 31 . 271 . 1951 

A8 = 101 - 38775469 
B8 = 4440692161 

A9 = 911 * 68513089 

B9 = 70772438609 

A10 = 3 - 5 - 13 . 293 * 17410177 

B10 = 7 . 17 . 41 . 617 . 374681 

All = 139. 323471 . 352589 

B11 = 47 . 1289. 3313* 89561 

A12= 239. 56599. 18677801 

B12= 271 X 4751 X 222510401 

A13 = 3 . 3 - 3 - 5 - 19 .71 . 22110582149 

B13 =17 . 4049 . 159839 . 414991 
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A14 = 59 . 2957 . 367837541873 

B14 = 2765207 - 26315036393 

A15 = 61 . 7193 . 2330950146013 

B15 = 109182559. 10621646561 

A16 = 3 . 5 . 419 . 2309 . 7919 . 9769 . 14519 
B16 = 17 . 263 - 1097009 - 3768285047 

A17 = 13 . 239 . 293 . 349 . 817646467189 
B17 = 7 . 271 . 617 . 4129 . 60950142049 

A18 = 4140124084452621921391 

B18 = 73 . 285937 . 224901512375431 

Al9 = 3 . 5 . 131 . 859 . 1637 . 117701 . 202881431 

Bl9 = 17 . 12791 . 17483311 . 19679858951 

A20 = 83 . 609997 . 20769906956429479 

B20 = 2297 . 4782487. 108541991056319 

A21 = 1979 . 11437 - 19609 . 37760737958617 
B21 = 1031 . 5591 . 3296688492423667409 

A22 = 3 . 3 . 5 . 5 . 19 . 71 . 239 . 13709 . 268577224977601 

B22 = 17.31 .89.271. 1951 .4049.3016231028009 

A23 = 283 . 90523. 166163429041348698409 
B23 = 751 . 6427071295434060531533489 

A24 = 13. 293. 17810796420402708017356769 
B24 = 7 .7.97.617. 5838449.4492789568611609 

A25 = 3. 5. 101 . 2447. 5303. 387754692 1418347070473 

B25 = 17. 17. 103. 5885911 . 1575725681 .4440692161 

A26 = 17231429089624614166470862182959 
B26 = 19538604045167506118097869511631 

A27 = 239.419.23092 331319 .3395921 . 1055589380119 
B27 = 271 . 17592 819391. 1097009. 726725691727969 

A28 = 3. 5 .797.911 .685130892 1544192927. 3798439531 
B28 = 17. 457. 6841 . 244303 . 5400610351 .70772438609 

A29 = 23599 . 7701979. 383765424374738665389331 
B29 = 1491991 .53011220810385264988247728439 

A30 = 31721 . 35045188235583569030468736587831 
B30 = 174703 . 242495520767 . 29753867037674612351 

A31 = 3 . 3. 5. 13. 19.71 .293. 14298492 174101772 3077938662617449 
B31 = 7. 17.41 .617.2017.4049.374681 .2180869437222901153 

A32 = 131 .2392 117701 . 76621897449577323816846793921 
B32 = 271 . 17483311 . 325944191 . 207318599897029599551 
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A33 = 1607.243402458839. 11504689616265565750737583 
B33 = 407359 . 45590256356873 274750586941086808567 

A34 = 3. 5. 139. 323471 352589. 3590347. 84000649255208196451 
B34 = 17.47. 1289.3313.89561 .655223.78400898092 51802561303 

A35 = 69206257. 16515714544563093108617538971911153 
B35 = 569. 12497. 14767 . 23133986606892 5335242610482412601 
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